Structure of ternary imide Li2Ca(NH)2 and hydrogen storage mechanisms in amide-hydride system.
نویسنده
چکیده
The crystal structure of the ternary imide Li 2Ca(NH) 2 has been determined using neutron powder diffraction data on a deuterated sample. The structure consists of infinite layers of edge-shared Ca[NH] 6 octahedra, which are separated by Li cations. The mobile Li (+) ions in such two-dimensional channels defined by Ca[NH] 6 octahedra layers are shown to have a great impact on the hydrogenation properties of the imide. Through detailed structural analysis on the products at various stages of desorption and absorption of the amide-hydride mixture, we proposed a dehydrogenation mechanism involving the mobile small ions in both amide and hydride and a hydrogen storage mechanism for the ternary imide.
منابع مشابه
Hydrogen storage of a novel combined system of LiNH2-NaMgH3: synergistic effects of in situ formed alkali and alkaline-earth metal hydrides.
Bimetallic hydride NaMgH(3) is used for the first time as a vehicle to enhance hydrogen release and uptake from LiNH(2). The combination of NaMgH(3) with LiNH(2) at a molar ratio of 1 : 2 can release about 4.0 wt% of hydrogen without detectable NH(3) emission in the temperature range of 45 °C to 325 °C and exhibiting superior dehydrogenation as compared to individual NaH and/or MgH(2) combined ...
متن کاملPERFORMANCE OF AB, ALLOYS FOR HYDROGEN STORAGE AND HYDRIDE ELECTRODES
Two types of hydride electxodes are potential candidates to replace the Cd elecsode in NilCd batteries, One is of the A type where A is a rare earth metal or mixture thereof, and B is the transition metal. The other is commonly referred to as A type. A , type alloys with partial substitution of the B element in A type hydride material (Ovonic) with Co, Mn, Al, and Fe were studied (A compo...
متن کاملKinetic Modification on Hydrogen Desorption of Lithium Hydride and Magnesium Amide System
Various synthesis and rehydrogenation processes of lithium hydride (LiH) and magnesium amide (Mg(NH₂)₂) system with 8:3 molar ratio are investigated to understand the kinetic factors and effectively utilize the essential hydrogen desorption properties. For the hydrogen desorption with a solid-solid reaction, it is expected that the kinetic properties become worse by the sintering and phase sepa...
متن کاملThermally Stable Poly(amide-imide)/Nanocomposites Reinforced Silicate Nanoparticles Containing Bicyclo Segment and Dibenzalacetone Moiety: Synthesis and Characterization
Two new samples of poly(amide-imide)/nanocomposites containing bicyclo segment and dibenzalaceton moiety in the main chain were synthesized by a solution intercalation technique. Poly(amide-imide) (PAI) 8 as a source of polymer matrix was synthesized by the direct polycondensation reaction of N,N´-bis(4-carboxyphenyl)bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic diimide 3 with 2,6-bis(4-amino...
متن کاملMECHANO-CHEMICAL SYNTHESIS OF NANOSTRUCTURED HYDRIDE COMPOSITES BASED ON Li-Al-N-Mg FOR SOLID STATE HYDROGEN STORAGE
It is observed that large quantities of hydrogen (H2) are released at ambient temperatures during the mechano-chemical synthesis of the Li-Al-N-Mg-based hydride composites using an energetic ball milling in a unique magneto-mill. For the (nLiAlH4+LiNH2; n=1, 3, 11.5, 30) composite, at the molar ratio n=1, the LiNH2 constituent destabilizes LiAlH4 and enhances its decomposition to Li3AlH6, Al an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 130 20 شماره
صفحات -
تاریخ انتشار 2008